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a b s t r a c t

We have investigated the electronic and optical properties of ordered BexZn1−xSe alloys using a 8-
atom supercell for compositions x = 0.0, 0.25, 0.50, 0.75 and 1.0. We report ‘state-of-the-art’ calculations
within generalized gradient approximation (GGA) and Engel-Vosko’s corrected generalized gradient
approximation (EVGGA) using the full potential linear augmented plane wave (FPLAPW) method as imple-
mented in the WIEN2K code. To see the effect of disorder, alloys are also modeled following the special
quasirandom structure (SQS) approach. The calculated lattice constants scale linearly with composition
(Vegard’s law). Dielectric functions for different compositional alloys are calculated for 8-atom cubic
lectronic properties
ptical properties
omputer simulations

supercell and chalcopyrite structure corresponding to [0 0 1] superlattice which show good qualitative
agreement when compared with experiment. The calculated band gaps are fitted with a quadratic equa-
tion Eg(x) = ax2 + bx + c. We find that there is a direct to indirect band gap crossover at x = 0.53 compared
with the measured value x = 0.46. The position of critical points (CP’s) E0 + �0, E1 and E2 show good
agreement with the experimental data. The difference between the calculated band gap and measured
band gap decreases with increasing concentration of Be. The valence band maxima and conduction band

Se-3
minima are dominated by

. Introduction

In the last few years dedicated efforts have been made to under-
tand the II-VI compounds due to their potential applications as
ptoelectronic devices while Be based semiconductor compounds
nd its alloys are comparatively less studied due to their high
oxic nature. Addition of Be in II-VI compounds like ZnSe and ZnTe
ould lead to better device properties of the II-VI compounds.
aag et al. [1] have suggested doping of Be in ZnSe (BeZnSe alloys)

esults in improved hardness [2,3] and a longer life time of the
evices. Smaller concentrations of Be are required to obtain larger
and gaps and have a lattice matched with GaAs [4]. The large
and gap of BeSe (5.15 eV) suggests the possibility of using these
aterials for ultraviolet (UV) optoelectronic applications. Chau-

et et al. [5] have grown BexZn1−xSe alloys on a GaAs substrate
y molecular beam epitaxy (MBE) [6] and studied reflectivity to
ocate direct to indirect band gap crossover. Wilmers et al. [7] have
rown BexZn1−xSe layers on a GaAs substrate by MBE and mea-

ured the dielectric functions for the full composition range (i.e.
= 0.0 to 1.0) by ellipsometric spectroscopy. As far as the theo-

etical calculations are concerned, the emphasis has been on the
lectronic and structural properties. Stukel [8] performed theo-

∗ Corresponding author: Tel.: +91 581 2524232
E-mail address: drsudhirkumar.in@gmail.com (S. Kumar).

925-8388/$ – see front matter. Crown Copyright © 2009 Published by Elsevier B.V. All ri
oi:10.1016/j.jallcom.2009.02.051
p and Zn-4s/Be-2p states for x = 0.0 and 1.0, respectively.
Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

retical calculations for electronic and optical properties of BeX
(X=Te, Se, S) compounds. Grein et al. [9] had used virtual crys-
tal approximation (VCA) within density functional theory (DFT)
to find the direct to indirect crossover in ZnxBe1−xSe alloys. Pos-
tinikov et al. [10] have calculated the vibrational properties using
SIESTA (Spanish Initiative for Electronic Simulations with Thou-
sands of Atoms) code [11] with norm-conserving pseudopotential
and localized basis function. Ground state properties and structural
phase transitions for BeX were studied by Hassan and Akberzadeh
[12]. Baaziz et al. [13] have calculated the composition depen-
dent structural and electronic properties of BexZn1−xSe alloys.
Ameri et al. [14] have used full potential linear muffin tin orbital
(FP-LMTO) method to see the effect of Be doping in ZnSe on
structural properties. Berghout et al. [15] have used plane wave
pseudopotential scheme to study the thermodynamical problem
of Zn1−xBexSe alloys. Recently Kumar et. al. [16] have studied the
electronic and optical properties of BexZn1−xSe alloys by using the
full potential linear augmented plane wave method (FPLAPW) [17].
Bouhafs and co-workers [18] have studied structural properties of
Pb-based alloys using hybrid FPLAPW method. In this paper we
extend our previous work [16] to the discussion of the critical

points.

A brief description of the computational details and method-
ology are given in Section 2. We present the theoretical results
in Section 3. Concluding remarks are presented at the end of the
paper.

ghts reserved.

http://www.sciencedirect.com/science/journal/09258388
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a maximum deviation of 1.7% for x = 0.25. However, it is well known
that GGA overestimates the lattice constants and such a small differ-
ences are expected [16]. We have calculated the bulk modulus using
the Murnaghan’s equation of state [27]. The calculated bulk mod-
ulus for ZnSe and BeSe are compared with measured data [28,29]
18 S. Kumar et al. / Journal of Alloys

. Computational methods

The computational method is based on a scalar relativistic,
ull potential linearized augmented plane wave method (FPLAPW)
17] as implemented in the WIEN2K code [19] which is known to
ive precise energy eigenvalues and eigenfunctions. Density func-
ional calculations can be divided into two classes. The first one
ses pseudopotentials with a relatively simple basis set and the
ther methods use a more complex basis set. The later class fall
he full potential linearized augmented plane wave (FPLAPW) and
inearized muffin tin orbital (FPLMTO) methods. However both
pproaches have a common plane wave basis set. Spherical and
on-spherical potentials are treated separately in the FPLAPW
ethod contrary to LMTO [20] method in which a muffin poten-

ial is taken into account. In the FPLAPW method the basis set
s obtained by dividing the unit cell into non-overlapping atomic
pheres (centered on the atomic sites) and an interstitial region. The
tomic sphere radii are chosen to be 1.8, 2.0 and 2.1 atomic unit (a.u.)
or Be, Zn and Se respectively. In the muffin-tin (MT) spheres, the
-expansion of the non-spherical potential and charge density was
arried out up to lmax = 10. In order to achieve energy eigenvalue
onvergence, the basis function is expanded up to RMTKmax = 7.0
where Kmax is the maximum modulus for the reciprocal lattice
ector and RMT is the average radius of the MT sphere). In order to
ee the convergence of the wave functions, we have also checked
ur results by taking the value of RMTKmax = 9.0. Our results
ere remains unchanged or very minor changed. The exchange

orrelation potential is treated within the generalized gradient
pproximation (GGA) [21] and Engel-Vosko’s GGA (EVGGA) [22].
t is known that both local density approximation (LDA) and GGA
sually underestimates the band gap. This underestimation of the
and gap is due to the fact that they have the simple forms and are
ot sufficiently flexible to reproduce both the exchange correlation
nergy and its derivative accurately. Engel and Vosko [22] consid-
red this shortcoming and constructed a new functional form of
GA which is able to better reproduce the exchange potential at the
xpense of less agreement in exchange energy. This approach which
s called EVGGA, yields a better band splitting and some other prop-
rties which mainly depend on the accuracy of exchange correlation
otential.

The self consistency was obtained by using 216 k-points in the
rreducible Brillouin zone (IBZ). The Brillouin zone integrations

ere carried out using the tetrahedron method [23]. Since calcula-
ions of the optical properties require a more dense k-space matrix,
e use 512 k-points for the calculations of the dielectric functions.

n this work, we have modeled the ordered alloy by considering a
-atom cubic supercell as well as chalcopyrite (CH) structure which

s a superlattice along [0 0 1] following the SQS approach [24]. The
-atom cubic supercell consist of four atoms of Zn and four atoms of
e. For x = 0.25, we replace one Zn atom at the corner with Be and
or x = 0.75 we replace three corner atoms of Zn by Be. Thus, we are
sing the simple Li0and Li2 structures. It is obvious that there are
ther options also. We find that for x = 0.50, the alloy has a layered
tructure. We consider alternate layers of Zn and Be atoms along
0 0 1] direction sandwiched between two layers of Se atoms. This
ives a cubic unit supercell along [0 0 1] direction. We would like to
ention that our calculations are for ordered alloys while the exper-

mental data is for disordered alloys. This requires that we should
ollow the special quasirandom structure (SQS) approach [24]. In
his case the 8-atom CH layered structure is a short period super-
attice whose layers are stacked in a standard orientation i.e. [0 0 1].

n practice, the layer stacking in SQS are chosen in non-standard
irections e.g. [1 1 3], [3 3 1], [1 1 5]. We hope to look into such type
f structures in future. The usefulness of these SQS semiconduc-
or alloys are discussed by Wei and Zunger [24]. As a matter of
act, we have taken the first step to make a separate calculation of
ompounds 480 (2009) 717–722

the dielectric function for x = 0.25, 0.50 and 0.75 following the SQS
approach. We have replaced Zn atoms by Be to get required concen-
tration of Be as follows: To get 25% and 75% concentration of Be, one
corner atom of Zn and one corner atom alongwith two face atoms
of Zn are replaced by Be. To get 50% of Be concentration two atoms
of Zn are replaced by Be. It is true that there other arrangements
are also possible. We have checked the difference in calculated
optical properties for two different arrangements of Be atoms in
Be0.50Zn0.50Se alloy. There is no significant difference between two
different arrangements which is not presented here. The detailed
formulation for the determination of the linear dielectric function
(tensor) ε(ω) = ε1(ω) + iε2(ω) with the FP-LAPW method has been
discussed by Draxl and Sofo [25]. For cubic structure, principal com-
ponent of ε2(ω) are equal, i.e. εxx

2 (ω) = εyy
2 (ω) = εzz

2 (ω). However, for
the CH structure, the principal component of εzz

2 (ω) are not equal
to εxx

2 (ω), i.e. εxx
2 (ω) = εyy

2 (ω) /= εzz
2 (ω) which shows anisotropy in

ε2(ω). This is due to the choice of the co-ordinate system. In the CH
system the x-axis does not show a four fold rotation symmetry as in
the cubic structure. Therefore, we calculate the average ε2(ω) spec-
tra for CH structure using ε2(ω) = [2εxx

2 (ω) + 2εyy
2 (ω) + εzz

2 (ω)]/3 to
compare with the cubic spectrum. The optical response is calculated
by the standard expresion for ε2(ω) [26]

ε2(ω) =
(

4�e2

m2ω2

)∑
ij

∫
|〈i|M|j〉|2fi(1 − fj)ı(Ef − Ei − ω)d3k (1)

where M is the dipole operator, i and j are the initial and final states
respectively, fi is the Fermi distribution function for the ith state, Ei

is the energy of electron in the ith state.

3. Results and discussion

3.1. Structural parameters

The structural parameters of BexZn1−xSe alloys are computed for
the five different compositions of x = 0.0, 0.25, 0.50, 0.75 and 1.0.
The results of structural optimization of BexZn1−xSe alloys are pre-
sented elsewhere [16]. In Fig. 1, we present our calculated lattice
constants as a function of beryllium concentration alongwith with
Vegard’s law and SIESTA [10] results. The lattice constant scales lin-
early with composition thus obeying Vegard’s law. Our results show
Fig. 1. Calculated equilibrium lattice constants of BexZn1−xSe alloys with filled
circles alongwith SIESTA results Ref. [10](open circles) and Vegard’s law Ref.
[37,41](open squares) are shown.
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Table 1
Bulk modulus of BexZn1−xSe alloys.

System Lattice constant
[present calculation]

B0 (GPa) B0

[experimental]
Other
calculation

ZnSe 5.7598 (5.667) 63.8256 62.5 a 56.826 c

Be0.25Zn0.75Se 5.6371 64.4782 – 60.810 c

Be0.50Zn0.50Se 5.4805 65.9804 – 65.407 c

Be0.75Zn0.25Se 5.3346 70.3573 – 70.136 c

BeSe 5.2282 (5.144) 83.8723 92.2 b 74.569 c

a Ref. [28].
b Ref. [29].
c Ref. [13].
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ig. 2. Calculated Bulk moduli, for BexZn1−xSe alloys for five different concentrations
.e. x = 0.0, 0.25, 0.50, 0.75 and 1.0. Measured values are taken from Ref. [28,29].

resented in Table 1 and Fig. 2 shows good agreement and better
han previous calculations [13].

.2. Band gap crossover

The calculated energy band gaps for cubic supercell of
exZn1−xSe alloys are presented in Table 2. For the CH structure, we

ound relatively smaller band gaps in contrast to the cubic super-

ell. This is in agreement with the previous calculations [30] which
redicts that SQS show a little smaller band gap. The major draw-
ack of density functional theory in calculating band gaps lies in
he exchange correlation term. To see the effect of exchange corre-
ation, we have compared band gaps calculated with GGA (EVGGA)

able 2
alculated band gaps for BexZn1−xSe alloys along differnt line in k-space under GGA (EVG

ystem Present calculation

(� − � ) (� − X) (� − L)

nSe 1.14 (1.99) 2.98 (3.90) 2.43 (3.08)
e0.25Zn0.75Se 1.90 (2.65) 2.83 (3.75) 2.76 (3.35)
e0.50Zn0.50Se 2.54 (3.42) 2.72 (4.22) 3.09 (3.71)
e0.75Zn0.25Se 3.35 (3.59) 2.65 (4.25) 3.56 (4.13)
eSe 4.30 (4.79) 2.63 (3.62) 4.32 (4.93)

a Ref. [40].
b Ref. [42].
c Ref. [13].
d Ref [32].
e Ref [5] for Be0.67Zn0.33Se.
f Ref. [39].
g Ref. [41].
h Ref. [38].
i Ref. [7].
j Ref. [43].
Fig. 3. The variation of band gap (eV) with concentration x for BexZn1−xSe alloys
showing cross-over.

presented in Table 2. We find that there is significant improvement
in the calculated band gap with the EVGGA exchange correlation
potential. On the other hand, in order to get the precise value of
the band gap, one has to go for GW approach which needs self
energy (˙), where G = Green’s function and W = Coulomb interac-
tion, should be estimated precisely. GW calculation is cumbersome
needs heavy computational time which is not considered in the
present paper. The detailed band structure calculations and den-
sity of states are discussed elsewhere [31]. The energy band gaps
variation in different directions (� − X and � − L) are presented
in Fig. 3. Photoluminescence measurements, to locate the direct to
indirect band gap crossover in BexZn1−xSe alloys, have been carried
out by Chauvet et al [5]. This was found to occur at x = 0.46 whereas
our band gap crossover occurs at x = 0.53, see Fig. 3. We have fitted
the � − L and � − X variations in the composition range (x = 0.0 to
1.00) to locate the direct to indirect band gap crossover presented
in Fig. 3. The best fit for � − X and � − Lis

E� −X
g (x) = 0.55x2 − 0.87x + 2.98 (2)

E� −L
g (x) = 0.90x2 + 0.93x + 2.43 (3)

The bowing factor is equal to 0.55 and 0.90 eV along � − X and

� − L respectively. It should be noted that composition x depen-
dent band gaps bowing are different along different symmetry
direction. The location of direct � − L to � − X band gap cross
over does not depend on the absolute value of the energy gap
instead it depends on the relative changes in band gap i.e. slope

GA) scheme (all in eV).

Previous study Experimental

(� − � ) (� − � ) (� − X)

1.04 a, 2.41 b, 2.69 b, 1.11 c 2.58 d –
1.64 c 3.5 e –
2.27 c 3.95 e –
2.75 c 4.4 e –
4.37 f, 5.47 g, 4.72 h, 4.19 c 5.55 i 4.0 j
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ig. 4. The total density of states of BexZn1−xSe alloys for x = 0.50 for cubic and CH
tructure.

f the fitted curve. Therefore, our estimated value of crossover
s unaffected even though GGA/EVGGA underestimates the band
aps.

.3. Cubic and chalcopyrite structure

In this section, we mainly focus our attention to the compari-
on of the calculated response function and density of states (DOS)
or cubic and CH structure at the cell volume 1064.0974 a.u.3and
066.9413 a.u.3 respectively for Be0.50Zn0.50Se. In Fig. 4, we present
alculated total density of states for CH and cubic structure for
e0.50Zn0.50Se. The projected density of states (PDOS) for cubic

s presented and discussed elsewhere [16]. The total DOS for CH
tructure is shifted towards lower energy ≈ 0.1 eV and show more
tructure than the cubic case. This is due to the fact that CH is a lay-
red structure which takes account the disorder effect better than
he simple cubic or Li0/Li2structure.

. Optical properties

The calculation of ε2(ω) requires energy eigenvalues and elec-
ron wavefunctions. These are natural outputs of the band structure
alculations. In this section, we present calculations for ε2(ω) and
ompare them with available experimental data [7]. In Fig. 5, the
alculated ε2(ω) are presented for BexZn1−xSe alloys for cubic (CH)
tructure for different concentrations, i.e. x = 0.0, 0.25 (0.25), 0.50
0.50), 0.75 (0.75), and 1.0 along with the measured [7] dielec-
ric functions for x = 0.0, 0.30, 0.50, 0.70 and 1.0 concentrations
espectively. As mentioned earlier, care should be excerised when
omparing the two because the theoretical calculations are for
rdered alloys while the experimental data’s for disordered alloys.

The Gaussian broadening parameter is taken to be 0.1 eV. The
alculated ε2(ω) of cubic (CH) structure of BexZn1−xSe alloys for
ve concentrations x = 0.0, 0.25 (0.25), 0.50 (0.50), 0.75 (0.75), and
.00 are shifted by 0.90, 0.510 (0.51), 0.310 (0.451), 0.150 (0.304),
.175 eV, respectively, by using the scissor operator shift (SOS). We
hift the calculated spectrum by the SOS rigidly so as to match the
nset of ε2(ω) and CP’s with the measured spectrum. The value of
OS in CH structure are little larger because calculated band gap
s smaller in SQS structure as discussed in Section 3.2. It would be
nteresting to find the SOS for the end compounds and then use

nterpolation. However the SOS does not follow Vegard’s law. The
alculated Eg for ZnSe and BeSe are 55.5% and 22.5% lower than
he experimental values [7,32]. Accordingly the value of the SOS for
eSe is approximately equal to one third that of ZnSe. We have not
sed the SOS in calculating the band crossover.

Fig. 5. Calculated ε2(ω), for BexZn1−xSe alloys for five different concentrations i.e.
x = 0.0, 0.25, 0.50, 0.75 and 1.0. Measured values of ε2(ω) are shown by dark circles
and taken from Ref. [7].
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Fig. 6. The critical energies of the calculated structures for BexZn1−xSe alloys as a
function of the beryllium composition. The obtained critical points E0, E0 + �0, E1, E2
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Table 3
Composition (x) dependence of the parameters approximated by the quadratic equa-
tion E(x) = ax2 + bx + c for critical points E0, E0 + �0, E1 and E2 and E′

1 (all in eV).

E0 E0 + �0 E1 E2 E′
1

[

[
[

[

[
[

[

[

[20] M. Methfessel, Phys. Rev. B 38 (1993) 1537.
nd E′
1 are shown by filled symbols i.e. circle, square, triangle, diamond and pentagon

espectively while corresponding experimental critical points Ref. [7] are shown by
mpty symbols.

For the cubic supercell our calculated ε2(ω) for ZnSe i.e. x = 0.0
s consistent with the earlier calculations performed by Walter et al.
33] and Kim and Sivananthan [34]. The calculated ε2(ω) for x = 0.0
resented in Fig. 5 a. has a small peak at 2.6 eV. This could be due to
ransitions from occupied Se-p states to the unoccupied Zn-s state
f the conduction band. The sharp rise in ε2(ω) at 4.0 eV reaches a
axima at 4.5 eV. This maxima arises from transitions just below

F i.e. Se-p and Se-d states to just above it i.e. Zn-s and Se-p states.
he main structure at 6.0 eV is dominated by the transitions from
e-p and Zn-d states (4.0 eV to 6.7 eV) below EF to the Se-p and Zn-p
tates (3.0 eV) above EF. We note that with increasing Be concentra-
ion x the conduction band minima moves towards higher energies.
his causes the structures at 2.6 eV and 4.5 eV to move towards
igher energies and finally merge with the main structure at 6.2 eV

or BeSe. The shifting of the peaks with increasing x is consistent
ith PL data [5]. With the increasing Be concentrations the con-
uction band states change from Se-p and Zn-p to Be-s,p states. We
ave mentioned different critical points (CP’s) in the inset. The CP’s
0 and E0 + �0 arise from transitions at the centre of the Brillouin
one. The E1 CP arises from transitions along the [1 1 1] directions
nd the E2 CP from [1 1 0] direction.

The averaged ε2(ω) for CH structure for x = 0.25, 0.50 and 0.75
re presented in Fig. 5 to compare with the cubic structure. The aver-
ged ε2(ω) for CH does not show any significant differences from
ubic except for Be0.75Zn0.25Se alloys. The structure at 4.45 eV com-
ares well with the experimental structure at 4.76 eV. This structure
ay correspond to transition between the parallel valance bands

nd first conduction band around P-point of the CH structure pre-
ented elsewhere [31].

The position of the CP’s for cubic structure, extracted from the
alculated ε2(ω) spectra are presented in Fig. 6. alongwith the
xperimental data [7]. The E2 and E0 + �0 CP’s are fitted with lin-
ar equations while the other CP’s (E0, E1 and E′

1) are fitted with
uadratic equations. There is overall good agreement with exper-
ment. However the E0 and E′

1 experimental data’s are not lie on
he fitted curve. This could be due to the uncertainty in locating
he positions of the CP’s. The fitting parameters are presented in
able 3.

The measurements have been done for the disordered sam-

les while our calculations are for ordered alloys. It is known that
isorder leads to the increase the possibility of indirect optical tran-
itions and violates translational symmetry. We find reasonable
greement with the experimental data for alloys in contrast to ZnSe.

[
[
[
[
[

a 0.99 0.612 2.367 0.4215 1.29
b 1.73 1.411 −1.103 −0.115 1.78
c 1.74 3.50 4.95 6.40 8.25

This suggests that effect of disorder may not be large. In the mea-
sured spectra of ZnSe the second structure at 4.5 eV could be due
to excitonic effects [35,36]. Excitonic effects are not included in the
present calculation. A similar problem with Si optical spectra has
been discussed and solved satisfactorily by Sottile [37] taking into
account excitonic effects.

5. Conclusions

Our calculated values of the bulk moduli are in better agreement
with the measured data compared to previous calculations. The
obtained direct to indirect crossover (� − X) shows good agreement
with measured data. This is due to the fact that crossover depends
on the relative band gap energy instead of absolute value. We are
able to get trends of ε2(ω) that are in agreement with the exper-
imental data. The position of CP’s E0 + �0, E1 and E2 are in good
agreement with the measured data. We would like to stress that
our calculations with cubic and CH structures are able to explain
most of the experimental structure. In spite of simplifications, the
agreement with an experimental data is very encouraging.
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